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A particle (m) is represented by a Ricci-flat Schwarzschild-based analytic enerel
(“energy +iXelectric charge”) geometry X with fundamental form: ds?=
8.pdx®dxP =(1—2m/r)dt* — (1 ~2m/r)~'dr* —r*(d9? +sin*9dg?), where
xY=(¢,r,0,p), m=m+ie is enerel, m is rest energy (or mass), and e is electric
charge. A unitary vector u, and a scalar ¢ are defined in X by means of the
postulated constitutive equation: qmupuﬂ + ¢, =0. The normalization condition
is postulated as:

m=x£ﬂfovf_aa¢pg‘/2u°drd0 de

where p=(R 5,5 R*7%)!/2 i5 an enerel density function, k=m?/Ac is a normal-
ization constant and also a fine-structure constant, g=det g,z = —r*sin’ ¢, and
R,gys is the Riemann curvature tensor formed with complex g, These
equations yield the charge e=0.0855115... of a purely mathematical eltron
(m)=(ie) of radius a.

1. INTRODUCTION

A specific analytic enerel (energy +iXelectric charge) geometry X is
proposed to represent a mathematical electron; X has a fundamental form
ds? =g,,‘ﬁdx"‘dx’3 and is defined in this paper by means of postulated
partial differential equations and other conditions. The geometry X is
based on a Schwarzschild geometry, i.e., X is a Ricci-flat geometry with
R,z =0, where R, z=Ri,,, R, denotes the Ricci curvature tensor, and
Rj,; denotes the Riemann curvature tensor formed with the metric tensor
8apof X; &, B, 7v,...=0,...,n— 1.

The postulates of an analytic enerel geometry X '=(8ap> Uy P; p) sEL
forth in this paper are based on those of an analytic enerel (Gleyzal, 1976)
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geometry Z=(z,g,4,,$; p) of n independent coordinate variables 2=
xY+iy" and enerel parameters my =m, +iey; K=0,...,N—1; y=0,...,n
—1; n=1,2,3,...; N=0,1,2,.... In this paper, n=4, K=0, N=1.

Absolute units of measurement are used, where y=c=#=1, y is the
gravitational constant, ¢ is the velocity of light, A=h/2#, and h is Planck’s
constant. We note m?y/hc is dimensionless if m has the dimension of
mass.

By postulate, a geometry X’ possesses in addition to the metric tensor
8qp @ velocity or “streamline” vector u* =dz“/ds, a scalar energy potential
function ¢, and a scalar energy density function p. The tensor g,g, vector
u,, and scalars ¢ and p may be either real valued or complex valued in a
geometry X', but the coordinates x? are assumed to be real valued in X",

In terms of a spherically symmetric geometry X, a purely mathemati-
cal derivation e=0.0855115... of the electric charge of an eltron (ie) is
proposed. This number can be compared with the experimentally de-
termined charge e, =0.08542 of an electron.

2. DERIVATION OF AN ELTRON (ie)

We begin with the well-known Schwarzschild metric: ds* =g, zdx“dx?,
where

-1
ds2=(1—22:—)dt2—(1—22:-) dr® —r}(df? +sin? 0dg?)  (2.1)

and x” =(¢, r, 8, p). This metric is associated with a particle (m) of energy
(or mass) m, where m is an arbitrary integration constant and may be real
or complex.

A unitary velocity vector field u® =dx*/ds, where u, =g, zu*, u u*=1,
and u#* =0 is assumed to exist in the geometry X. There results

m m

u°=(1—27)'1/2, u0=(1—27)1/2, 4, =0 2.2)

in the geometry X; k=1, 2, 3. o
A scalar energy potential function ¢ is postulated to exist in any
analytic enerel geometry X'. In the geometry X:

¢=(1—2-':1)'/2 (2.3)
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Given the metric tensor g,z of X’ subject to the constitutive equation
R, z=0, the constitutive equation which defines u, and ¢ in a general
geometry X’ is postulated to be

U gu” +¢,=0 (2.4)

It is readily verified that ¢ and u, as expressed by equations (2.2) and (2.3)
for the particular geometry X constitute a solution of equation (2.4) for
general enerel geometries X’; for

uaﬁuﬁ = (uaﬂ - u,Ba)uﬁ = (unO - an)uO = (ua, 0o uO, a)uo

=—ug U=y fUy=—¢ /P

where f, signifies 9 f/3x®, and A, signifies the covariant derivative of a
scalar, vector, or tensor }\ with respect to the coordinate x®. Therefore,
In¢=Inu,; consequently p=u,=[1—2(m/ r)]'/? is a solution of equation
(2.4) in the particular geometry X. In summary: equations (2.1), (2.2), and
(2.3) express an exact solution X of the constitutive equations of an
analytic enerel geometry X'.

In conventional theory it is usually assumed that the energy density p
vanishes if R,z =0 except on a singularity. Let us depart from this view as
follows. Given the metric tensor g,5 of X', we write

p= (RapysRa'Bya)l/z (2.5)

Thus p is categorically expressed in terms of g, and the first and second
derivatives of g, with respect to the coordinate variables x?. This form of
definition of energy density (non-complex-valued) has been considered by
Eddington (1937, p. 141) in his analysis of the problem of choosing the
field equations of gravitational relativity theory. In the case where g,z is
the Schwarzschild tensor,

p=(48)"*m/r? (2.6)

By postulate, the total mass M due to density p and potential energy ¢
in a sphere of radius a of the geometry X is given by the invariant integral:

M=xj:j:fa pou’g'%drdfde 2.7
~a

where k is a universal constant, and g=det 8up- It is of interest that in
corresponding integrals of conventional theory there is introduced, ad hoc,
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a factor (—g)'/2 =ig!/? in order to “eliminate” i. By calculation in X: 1%
=1, and g= —r?sin? §. Therefore

k2 7 a . m .
M=« fo fo f_az(4s)‘/27sm0drdodqp (2.8)

expresses the mass M in a sphere of radius a due to a particle of mass m
which generates the field g .

Let the symbol m, where m=m+ie, m is mass or energy, and e is
electrical charge, now denote enere/ in a new unified field theory; cf.
Moffat (1958) and Gleyzal (1976). The physical meaning of the various
quantities may then change and require re-identification; for convenience
of exposition the same words or symbols may be used but with a different
meaning,.

Evaluation of the integral (2.8) yields

M=ki*(48)"-20%m

= —x(48)"/%-272m (2.9)

Let us assume M=m. In this case the quantity m cancels out, and there
results the normalization condition:

1= —x(48)"/%. 272

= —xl136-75723... (2.10)
Therefore
k=—1/136.75723... (2.11)

This number, except for sign, is close in value to the fine-structure constant
1/137.037 of quantum mechanical theory. Either this agreement of the two
numbers is pure chance and the proposed theory of enerel mathematical
physics is simply another unified field theory, or, the foregoing derivation
of the fine-structure constant as a normalization condition is potentially a
significant new turning point in mathematical physics.

Accordingly, let us write

m?=x

Then m=i-(.0855115...) is the “energy” of an eltron (m)=(ie).

This result suggests that the particle described by equations (2.1),
(2.2), (2.3), and (2.6) represents an eltron, a massless, pure electric charge.
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Note. A general theory of analytic enerel geometry Z=(Z";
Zogs Uy &5 05 97, y"‘f; my) will be offered for publication. This theory in-
cludes an “enerel generalization” of the Dirac—-Bargmann theory (Brill and
Wheeler, 1957) of wave mechanics.
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